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1 Introduction

The unitarity of the CKM matrix corresponds to six independent conditions between

the CKM matrix elements[1]. Geometrically,
these conditions can be visualized as triangles
formed by the appropriate CKM matrix ele-
ment combinations. The condition on the d
and b rows,

P
q=u;c;t VqdV

�

qb = 0, results in the
CKM triangle shown in Fig. 1. If CP viola-
tion occurs via the CKM matrix, this triangle
will have non-zero area. The three angles in
this triangle, known as �, � and , can be ex-
tracted via CP asymmetries: the angle � from
the decay B0 ! J= Ks[2], the angle � from
the decay B0 ! �+��[3] and the angle  from
the decays Bs ! DsK[4] and B� ! D0K�[5].
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Figure 1: The d; b CKM triangle

The amplitude for B ! �� is dominated by the tree process b! uW;W ! d�u, which
has a weak phase . If this were the only contribution, the CP asymmetry in B0 ! �+��

would cleanly measure sin(2� + 2) = � sin(2�). However, there may be signi�cant contri-
butions from the penguin process b! dg. This process has a weak phase �� and therefore
results in a distortion of the CP asymmetry. Any interpretation of the CP asymmetry in
B0 ! �+�� must therefore account for the possibility of a penguin contribution.

Gronau and London[3] have shown that the penguin contributions can be isolated by
applying an isospin analysis to the decays B0 ! �+��, B+ ! �+�0 and B0 ! �0�0.
Aleksan, Gaidot, and Vaisseur[6] have estimated that this analysis typically results in a 60%
increase in the uncertainty on sin(2�) relative to the ideal case where only the tree diagram
need be considered. While feasible for an experiment at an e+e� collider, this analysis is of
no use to an experiment at a hadron collider, given that it is very unlikely that the mode
B0 ! �0�0 will ever be reconstructed in such an environment.

Silva and Wolfenstein have shown[7] that � can be determined from the CP asymmetry
in B0 ! �+��, the relative rates for B0 ! �+�� and B0 ! K+��, and assuming SU(3)
symmetry and factorization. Some complications are the possibility of �nal state phase
shifts, and electroweak penguins that invalidate the SU(3) correspondence[8].

We present herein an analysis of the expected uncertainty on �, and the number of
discrete solutions, given a measurement of the time-dependent asymmetry between B0 !
�+�� and �B0 ! �+��, a measurement of the average branching ratio for B0 and �B0 decays
to �+��, and constraints on the magnitudes and relative phase of the tree and penguin
diagrams.
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2 CP violation in B0
! �+��

The mathematical expression of the CP asymmetry in the decay B0 ! �+�� can be found
in numerous places in the literature. Here we follow the exposition of Gronau[9].

In general, the two physical states BL and BH are given in terms of the strong eigen-
states B0 and �B0 via

jBLi = pjB0i+ qj �B0i (2.1)

jBHi = pjB0i � qj �B0i (2.2)

If two amplitudes (e.g. tree-level and penguin) contribute to the decay B0 ! f , then the
decay amplitudes of B0 and �B0 to a CP eigenstate f are given by

Af = A(B0 ! f) = ATe
i�T +AP e

i�P (2.3)
�Af = A( �B0 ! f) = ATe

�i�T +AP e
�i�P (2.4)

where each term in the above expression corresponds to a process. The amplitudes Ai are
complex and contain hadronic �nal-state-interaction phases. The time-evolution of states
initially pure in B0 and �B0 are then given by

�(B0 ! f) = jAf j
2e�t

h
j�j2 sin2(xt=2) + cos2(xt=2)� Im� sinxt

i
(2.5)

�( �B0 ! f) = jAf j
2e�t

h
sin2(xt=2) + j�j2 cos2(xt=2) + Im� sinxt

i
(2.6)

where

� =
q

p

�Af

Af

(2.7)

The time-dependent asymmetry, a(t), is thus

a(t) =
�(B0 ! f) � �( �B0 ! f)

�(B0 ! f) + �( �B0 ! f)
=

(1� j�j2) cos xt� 2Im� sinxt

1 + j�j2
(2.8)

For the case f = �+��, q=p = e�2i� and �T = , and in the approximation of neglecting the
penguin contribution, i.e. AP = 0, � is a pure phase which results in Im� = � sin(2�+2) =
sin(2�), assuming the unitarity of the CKM matrix. In this case, the amplitude of the
asymmetry directly yields a clean extraction of the angle 2� { but with a discrete ambiguity.

In this same decay mode, however, the penguin, assumed to be dominated by the top
quark loop, has a CKM phase given by �P = �� and therefore the extraction of 2(� + )
is not clean. Inspection of equation 2.8 shows that the e�ect of the penguin contribution is
the addition of an additional sinusoidal modulation in the time-dependent asymmetry, the
additional factor (1� j�j2) cos xt. The overall asymmetry can then be written as

a(t) = A sin(xt+ �) (2.9)
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where

A =

q
(1 � j�j2)2 + 4Im2�

1 + j�j2
� sign(�Im�) (2.10)

tan � =
1� j�j2

2Im�
;�

�

2
< � <

�

2
(2.11)

This convention reduces smoothly to the standard expression for the no-penguin case. We
also exploit the dependence of the average branching ratio for B ! �+��, Bavg on the angle
�:

Bavg / �(B0 ! �+��) + �( �B0 ! �+��) = jAf j
2
h
1 + j�j2

i
(2.12)

In what follows we will refer to the strength of the penguin contribution, AP , relative
to the tree-level, AT . We thus introduce the ratio of the amplitudes f = AP=AT = jf jeiÆ,
where Æ is the strong phase di�erence between the amplitudes, and obtain for �:

� = e2i�
1 � fe�i�

1� fei�
(2.13)

Experimentally, we have three observables: the magnitude of the asymmetry, A, the
phase of the asymmetry at t = 0, �, and the average branching ratio, Bavg. All of these
are a�ected by both the tree-level and penguin diagrams. The dependence of the three
observables, A;�;Bavg, on the angle � is shown in �gure 2, for various values of Æ. We have
taken jf j = 0:2 for these plots. We see that the asymmetry in the presence of a penguin
contribution is no longer symmetric around � = 90o. Also, at � = 90Æ, the average branching
ratio is no longer equal to the tree-level one, but it is increased by a factor 1+ jf j2, i.e. 1.04
in this example. Note that the phase, �, vanishes for Æ = 0; 180o.

In the absence of penguins, there is a four-fold ambiguity in the determination of � from
the CP asymmetry: The asymmetry is identical for the case �! �=2��, and for �! ���.
A most interesting feature of the plots in �gure 2 is the behavior of the branching ratio
between 0 and �=2: the curves change monotonically and thus lift the ambiguity between �
and �=2��. Also, the curve for A is antisymmetric around � = 0, while the curves for � and
Bavg are symmetric around � = 0. Thus, the ambiguity between � and � � � is also lifted:
there is only a single discrete case, A = 0 and �!��, where two values of � are a solution
given A, �, and Bavg. In summary, in the presence of penguins, the four-fold ambiguity is
in principle completely lifted except for the discrete case A = 0 where it becomes a two-fold
ambiguity, �!��.

In the next section we estimate the expected error on � from �tting the above asym-
metry as a function of the statistics. Most proposals for experiments at hadron colliders
involve a �+�� trigger that imposes (usually indirectly, via impact parameter requirements)
an e�ective cut t > T on the lifetime of the B0 decays reconstructed. We thus compute the
error on the observables as a function of the e�ective cut value, T .
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Figure 2: The three experimental quantities, the asymmetry,A, the phase, �, and the average
branching ratio, Bavg (normalized to the \no penguin" case), as function of the angle �. The
relative size of the penguin contribution is 20%. The various curves correspond to di�erent
values of the strong phase di�erence Æ.
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3 Fitting the data for A and �

The numbers of B0 (N+(t)) and �B0 (N�(t)) at time t can be written as

N�(t) =
N

2
e�t [1�A sin(xt+ �)] (3.14)

where we used equation 2.6 and integrated over all time to express jAj2 in terms of the total
number of B0 and �B0 mesons, N . We are interested in estimating the error on the quantities
A and � resulting from a �t to the data by the above form. The probability that a set of B0

and �B0 mesons (initially pure) will decay at times ti and tj respectively is given by

L =
Y
i

e�ti [1 +A sin(xti + �)]
Y
j

e�tj [1�A sin(xtj + �)] (3.15)

Figure 3: Contours of equal probability in the ÆA� Æ� plane

Equation 3.15 is then the expression for the likelihood for this set of events. The inverse
of the covariance matrix for the variables A and �, G = V �1, is given by

GAA = �
@2 lnL

@A2
G�� = �

@2 lnL

@�2
GA� = �

@2 lnL

@A@�
(3.16)
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The covariance matrix is computed in appendix A.
The one sigma contour in the A� � plane is given by the ellipse equation:

1

1� �2

"
ÆA2

�2A
�

2�ÆAÆ�

�A��
+
Æ�2

�2�

#
= 1 (3.17)

where ÆA = A � �A, Æ� = � � �� and �A, �� are the \true" values, and � is the correlation
coeÆcient. This error ellipse is shown in �gure 3 for four di�erent values of the asymmetry
A, and � = 0:1. It can be seen that the error on � decreases as the asymmetry gets larger.

4 Extraction of � given A, �, and Bavg

As discussed in Section 2, there are three observables related to the CP asymmetry in B !
��. The uncertainties on the measurements of A and � were discussed in Section 3. The third
observable, Bavg, can be measured from untagged events, and will therefore have a very low
statistical error. The extent to which systematic uncertainties can be controlled will therefore
be a crucial consideration. While absolute branching ratios are very diÆcult to obtain, it
will be suÆcient to measure the branching ratio relative to the process B0 ! `+���.

There are �ve unknowns that inuence the values of the 3 observables:

� �, the weak phase we are trying to extract from these measurements.

� AT , the amplitude of the tree diagram. Assuming factorization, the amplitudes for
B0 ! `+��� and B0 ! ���+ are proportional to a common form-factor, spanning a
range of q2 for the �rst case, and evaluated at q2 = m2

� for the latter case[10]. Ref. [11]
points out that color-allowed B decays are well described by factorized amplitudes, but
�nd that it is necessary to add non-factorized amplitudes to describe color-suppressed
B decays. Since the decay B0 ! ���+ is color allowed, we assume that the decay
B0 ! `+��� will be observed in conjunction with B0 ! ���+ and used to predict
AT .

� AP , the amplitude of the penguin diagram. This amplitude can be estimated from
measurements of the decay B0 ! K��+, applying SU(3) corrections, and scaling by
jVtd=Vtsj[7]. Some complications are that this decay may in turn have a contribution
from tree diagrams, and furthermore, there may be electroweak contributions that
invalidate the SU(3) correspondence[8]. The decay mode Bs ! ��0 may possibly be
used to check our understanding of these e�ects[12]. We assume that the relative size
of the signals for B0 ! K��+ and B0 ! ���+ will determine AP , although with less
precision than for AT .

� The weak phase of the penguin amplitude. The top quark dominates in the loop,
therefore this phase will be �� to a good approximation[13]. As shown in equation 2.13,
in this case we are not sensitive to the value of �.

7



� The strong phase di�erence, Æ, between the tree and penguin diagrams. There is a
perturbative phase di�erence of order 10Æ[8], and there are also nonperturbative e�ects
from hadronization that are expected to be small but are incalculable. The phase
shift between the I=0 and I=2 amplitudes can be obtained from a measurement of the
branching ratios of B ! �+��, B ! �+�0, and B ! �0�0. This check can be done at
a symmetric e+e� collider, and does not require avor tagging or time-ordering. The
question then becomes: Is there a di�erence in the hadronization for a penguin diagram
and I=0 tree diagram? The extent to which these phase shifts can be constrained helps
constrain our solution for �.

Given an assumption for the central values of these parameters, we can calculate the
values of A, �, and Bavg. Given an assumption for the e�ective number of tagged events,
Ntag[15], we can calculate the error matrix for A and �. We will make assumptions on the
uncertainties on AT , AP , Æ, and Bavg, parametrized as Gaussians with widths �(AT), �(AP ),
�(Æ), and �(Bavg). With these assumptions, we can form a �2. The minimization program
MINUIT is used to minimize this �2, return the input value of �, and estimate the expected
uncertainty on a measurement of �.

Unless spec�ed otherwise, we use the following as default values of the parameters:

� Ntag = 100, starting at c� = 1.6 lifetimes[16].

� AT = 1:0

� AP = 0:2

� Æ = 0:0

In Fig. 4 we show the expected 1� errors as a function of � for various conditions. In
Fig. 4a, we show the errors for the case where AP = 0:0, and has been constrained to zero in
the �t. We see that the errors are largest for � near 45Æ and 135Æ, where the dependence of
sin(2�) on � is lowest. In Fig. 4b, c, and d, we show the errors for the case where AP = 0:2
and we are able to put the speci�ed constraints on the amplitudes. We see that in the case
where there is a penguin amplitude, and it is well understood, in general, the errors are
smaller than in the case of no penguin amplitude.

The plots in Fig. 4 do not convey all the relevant information on the constraints on �.
The errors are highly non-Gaussian, and there are multiple minima. To gain further insight,
we choose two particular input values for �, 47Æ and 67Æ. We then scan as a function of the
assumed value of � in the �t. For each point in the scan, we hold � �xed, and mimimize

the �2 with respect to all the other parameters. We then plot
q
�2 � �2min as a function of

�, interpreting
q
�2 � �2min as the number of standard deviations on �.

We show the results in Fig. 5 for the case AP=AT = 0:05. In Fig. 5a, we assume
very little knowledge of the tree and penguin parameters. We see that when the penguin
contribution is small, loose constraints are suÆcient for the determination of �. However,
even with the tight constraints of Fig. 5e we are unable to lift the discrete ambiguities.
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Figure 4: One � errors on � as a function of the input value of �. The solid line shows the
positive errors, and the dashed line the negative errors:
(a) AP = 0, and �xed to 0 in the �ts.
The following assume AP = 0:2:
(b) �(AP )=AP = 0:1, �(AT )=AT = 0:03, �(Æ) = 20Æ, and �(Bavg)=Bavg = 0:06:
(c) AP , AT , and Æ held �xed in the �ts, and �(Bavg)=Bavg = 0:06:
(d) �(AP )=AP = 0:1, �(AT )=AT = 0:015, �(Æ) = 20Æ, and �(Bavg)=Bavg = 0:03:
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Figure 5: N� as a function of �, for an input value of � = 47Æ on the left and � = 67Æ on
the right. The input value for AP=AT is 0.05.
For the following, we assume �(Bavg)=Bavg = 0:06:
(a) �(AP )=AP = 1:0, �(AT )=AT = 1:0, no constraint on Æ.
(b) �(AP )=AP = 1:0, �(AT )=AT = 0:03, no constraint on Æ.
(c) �(AP )=AP = 1:0, �(AT)=AT = 0:03, �(Æ) = 20Æ.
(d) �(AP )=AP = 0:1, �(AT )=AT = 0:03, no constraint on Æ.
(e) �(AP )=AP = 0:1, �(AT)=AT = 0:03, �(Æ) = 20Æ.
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Figure 6: N� as a function of �, for an input value of � = 47Æ on the left and � = 67Æ on
the right. The input value for AP=AT is 0.2.
For the following, we assume �(Bavg)=Bavg = 0:06:
(a) �(AP )=AP = 1:0, �(AT )=AT = 1:0, no constraint on Æ.
(b) �(AP )=AP = 1:0, �(AT )=AT = 0:03, no constraint on Æ.
(c) �(AP )=AP = 1:0, �(AT)=AT = 0:03, �(Æ) = 20Æ.
(d) �(AP )=AP = 0:1, �(AT )=AT = 0:03, no constraint on Æ.
(e) �(AP )=AP = 0:1, �(AT)=AT = 0:03, �(Æ) = 20Æ.
For the following, we assume �(Bavg)=Bavg = 0:03:
(f) �(AP )=AP = 0:1, �(AT )=AT = 0:015, �(Æ) = 20Æ
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We show the results in Fig. 6 for the case AP=AT = 0:2. In Fig. 6a, we assume very
little knowledge of the tree and penguin parameters. As qualitatively pointed out in Ref [14],
in this case, we can rule out only a small fraction of the available parameter space. As we
add constraints in Fig. 6b, c, and d, there are fewer minima and more of the parameter space
can be ruled out. As shown in Fig. 6e, it is not until we constrain all the parameters that we
are left with a single minimum. Tightening the constraints in Fig. 6f, we more convincingly
rule out alternative minima and improve the precision of the measurement of �.

In Fig. 7, we show similar plots as for Fig. 6, using the same input values for � but
negative assumed values for �. As discussed earlier, there is another solution only for the
discrete case A = 0. However, even for other values of A, two solutions may be allowed within
the uncertainties of the measurement. Fig. 7 illustrates how well we can choose between the
solutions. The separation is quite convincing for � = 47Æ, i.e. for large values of A, and
becomes more diÆcult for � = 67Æ, i.e. as A gets smaller.

Figure 7: N� as a function of ��, for an input value of � = 47Æ on the left and � = 67Æ on
the right. For the following, we assume �(Bavg)=Bavg = 0:06:
(a) �(AP )=AP = 0:1, �(AT )=AT = 0:03, �(Æ) = 20Æ.
For the following, we assume �(Bavg)=Bavg = 0:03: (b)�(AP )=AP = 0:1, �(AT )=AT = 0:015,
�(Æ) = 20Æ.

It is clear from the above plots that knowledge of the strong phase di�erence Æ decreases
the error on � and in addition can help distinguish between the discrete solutions on �.
Figures 8 and 9 are similar to Figure 6, except we scan as a function of assumed values for

both � and Æ, and plot constant contours in
q
�2 � �2min. In the case of � = 47Æ there are

only two minima, and one needs to know Æ to better than 60Æ in order to distinguish between

12



Figure 8: One, two, and three � contours as a function of � and Æ, for input values of
� = 47Æ, Æ = 0Æ, and AP=AT = 0.2.

Figure 9: One, two, and three � contours as a function of � and Æ, for input values of
� = 67Æ, Æ = 0Æ, and AP=AT = 0.2.
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the two discrete solutions by 2�. In the more complicated case of � = 67Æ, there are multiple
solutions even within the �rst two quadrants for �. Here a more precise knowledge of Æ is
required to unambiguously extract �.

Figure 10: One, two, and three � contours as a function of input value of � and assumed
value of �, for various values of �Æ. Note that there always remains a discrete ambiguity
between � and �� where A = 0.

The above two values of � of 47Æ and 67Æ lead to quite di�erent conclusions on the
knowledge of Æ required for a unique determination of �. We have also investigated the e�ect
of the uncertainty on Æ on the extraction of �, for all values of �. As an example, Figure 10

shows constant contours of
q
�2 � �2min in the plane of input value of � and assumed value

of �, for three di�erent constraints on Æ. We see that the discrimination between discrete
ambiguities improves with the precision on Æ until the uncertainty on Æ reaches a value of
20Æ. We �nd that this result holds for all values of �.
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5 Conclusions

We have presented the results of an error analysis on �, given a measurement of the time-
dependent asymmetry between B0 ! �+�� and �B0 ! �+��, a measurement of the average
branching ratio for B and �B decays to �+��, and constraints on the magnitudes AT and AP

and relative phase Æ of the tree and penguin diagrams. While there are an in�nite number of
possible scenarios, our results set the scale for how well these parameters need to be known.
We have considered scenarios in which we have an e�ective number of 100 perfectly tagged
signal events[15].

In the case where the penguin contribution is small (AP=AT � 0:05), only crude in-
formation on AP and AT is needed for the extraction of �. However, we are left with four
discrete ambiguities, as in the case where there is no penguin contribution.

In the case where the penguin contribution is larger (AP=AT � 0:2), more precise
information on AP and AT is needed. If this precision can be achieved, the uncertainty
on � is in many cases smaller than for the case of no penguin amplitude. Furthermore,
if it is possible to place constraints on Æ, some or all of the discrete ambiguities may be
lifted. A large penguin amplitude therefore presents an opportunity for a much improved
determination of �.

In summary, we �nd that if the penguin amplitudes are either small or well understood
then it is possible to determine � from the CP asymmetry in B0 ! �+�� without resorting
to the observation of �nal states with neutral particles. Thus, measurements would be
feasible at hadron colliders as well as e+e� colliders. Furthermore, a large penguin amplitude
presents an opportunity for improved precision on � while lifting some or all of the discrete
ambiguities.
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A Likelihood formalism for the extraction of �tting er-

rors

The analysis follows closely that in reference [17]. For brevity, we de�ne the functions n�(t):

n�(A;�; t) = 1�A sin(xt+ �) (A.1)

With this notation, and ignoring an irrelevant constant term, the log-likelihood (see equa-
tion 3.15) is

lnL(A;�) =
X
i

lnn+(A;�; ti) +
X
j

lnn�(A;�; tj) (A.2)

The second derivatives of the above function are the elements of the inverse of the correlation
matrix, G = V �1. For example,

GAA = �
@2 lnL

@A2
=
X
i

sin2(xti + �)

[n+(ti)]2
+
X
j

sin2(xtj + �)

[n�(tj)]2
(A.3)

These sums can be approximated by integrals:

X
k

f�(tk) �
Z
1

T
f�(t)N�(t)dt (A.4)

where the limits of integration assume that a lifetime cut is imposed on the reconstructed
mesons, and N�(t) are de�ned in equation 3.14. Since in general f�(t) = g�(t)=[n�(ti)]2,
equation A.3 (for the general error on variables p and q) thus becomes

Gpq =
N

2

Z
1

T
e�t

"
g+(t)

n+(t)
+
g�(t)

n�(t)

#
dt (A.5)

=
N

2

Z
1

T
e�t [g+(t)n�(t) + g�(t)n+(t)]dt (A.6)

where we have ignored terms which of order A2:

n+(t)n�(t) = 1 �A2 sin2(xt+ �) � 1: (A.7)

We expect this to be a reasonable approximation even for extreme values of sin(2�), since
in practice the observed asymmetry will be reduced by a dilution factor D � 0:5 resulting
from imperfect avor tagging. With some algebra, we obtain

GAA = N
Z
1

T
e�t sin2(xt+ �)dt (A.8)

G�� = NA2

Z
1

T
e�t cos2(xt+ �)dt (A.9)

GA� =
N

2
A
Z
1

T
e�t sin 2(xt+ �)dt (A.10)
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We note that, as expected, these equations are invariant with respect to the following trans-
formation in the presence of dilutions:

A ! DA (A.11)

N !
N

D2
(A.12)

For brevity, we introduce two new functions, Pc(x; T ) and Ps(x; T ) given by

Pc(x; T ) =
1

1 + x2
[cosxT � x sinxT ] (A.13)

Ps(x; T ) =
1

1 + x2
[x cosxT + sinxT ] (A.14)

and the end result is

GAA =
N

2
e�T [1� Pc(2x; to)] (A.15)

G�� = A2
N

2
e�T [1 + Pc(2x; to)] (A.16)

GA� =
N

2
e�TAPs(2x; to) (A.17)

where to = T + �

x
.
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